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A disperse medium consisting of an incompressible fluid and small spheres of 
equal radii suspended in the fluid is considered as the superposition of two inter- 
penetrating and interacting continua. Equations of conservation of mass, momen- 

tum and moment of momentum are obtained for the two continua in which all 
unknowns are expressed in terms of functionals of mean stresses acting at the 
surface of an individual suspended sphere. 

The mathematical definition of the motion of a disperse system - investigated in 
numerous works - requires the solution of two distinct problems. The first of these con- 
sists of the formal derivation of “macroscopic” equations for the system phases which 
are assumed to be interpenetrating continuous media with specific properties. These 

equations which reflect the laws of conservation of mass, momentum and moment of 
momentum are usually obtained by known methods of mechanics of continuous media 
(1, 21. The derivation of such equations for multiphase disperse systems of various kinds 
is treated, for instance, in [3 - 61. However the obtained equations contain knot 
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terms which have to be defined by physical parameters of phases and the unknown vari- 
ables appearing in these equations, since only then can the system of equations be closed. 
The derivation of these rheological relationships (“equations of state”) is the second 
object of the general problem, and requires separate analysis. The form of these rela- 

tionships evidently depends on the kind of the considered disperse system. 
Batchelor had shown fl] that the successful solution of the second problem requires 

the determination of formal relationships between the variables which define the macro- 

scopic aspect of the flow and the quantities which determine (in the average) the hydro- 
dynamic situation at the level of individual particles. In accordance with this the equa- 
tions of conservation are derived below in a form convenient for direct formulation of 

relationships between macroscopic variables and mean stresses at the surface of a single 
suspension particle. 

To simplify the problem and investigate its theoretical aspects, the monodisperse SUS- 

pension is assumed to be in thermodynamic equilibrium SO that it is unnecessary to take 

into consideration the equations of conservation of the entropy of phases, and the equa- 
tions of conservation of energy become trivial corollaries of related equations of conser- 

vation of mass, momentum and moment of momentum. The flow boundaries and the 
interfaces of the suspension and the single-phase continuous medium, which may con- 

siderably affect the system energy balance [S], are excluded from the analysis so that 
the results are valid only at distances substantially greater than the mean distance bet- 
ween adjacent particles. Finally, we assume that the continuous suspension phase is 
incompressible, the particles are solid incompressible spheres, and that the Reynolds 
number which defines the flow around individual particles is small. According to [9] 

we can neglect in this case the random puisations of particles induced by fluctuations 
of the suspension concentration on the shaping of its rheological properties. However 
the particles are not so small as to make their translational or rotational Brownian mo- 
tions significant. 

1. Let us consider a system of iv solid spheres of radius a with their centers at 
points r(j) (i = 1, 2, . . ., Iv) in an incompressible fluid. Such system can repre- 
sent either the disperse phase of a suspension or a compact granular layer with fluid 

filtering through it. The number N and the total volume A occupied by the system 
are assumed to be large in order to make possible the application of conventional sta- 

tistical methods. The problem involves the formulation of equations of conservation 
for the two phases of the considered model of two interpenetrating continuous media 
[lo]. This model makes sense only if we can separate in the media such a small phy- 
sical volume 6 in which the number of particles is sufficient for the averaging over it 
to be valid, but whose linear dimensions are considerably smaller than the scale of the 
macroscopic flow. On these assumptions it is possible to have the variables which define 

such flows virtually independent of coordinates within the considered volume. 
The fluid macroscopic velocity and pressure fields determined in particle interstices 

are defined by random functions V (t, r) and P (t, r),respectively. The translational 
velocity of the center of the i th particle is denoted by vii(J) (t) and its angular velo- 
city around an axis passing through its center by n(J) (t). it is also expedient to intro- 
duce the random vector function 

w (4 4 = 
W(j)(t) + A(j) (t) X (r - r(j)), / r - ,(i) ; < a 

, r__.. ,w [>a, i=l,2 ,..., N 
(1.1) 0 , 
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which defines the microscopic velocity of the disperse phase. In addition we introduce 
the microscopic velocity of the s~~nsion 

C (t, P) = 8 (t, r) V (t, r) + [ 1 - 8 (t, r)] W (t, r) (1.2) 

which is defined at all points of volume A . In this formula 8 (t, r) is a function which 

vanishes inside particles and is equal unity outside these. This function was considered 

in [ll], 
The macroscopic variables which determine the average motion of the system phases 

are defined by 

s 
8 (t, I + r’) V (t, r + r’) dr’ (1.3) 

b 

p(t,r)=~Se(t,r+r’)P(t,r-tr’)dr’ 
b 

w @, 4 = * s [l - 0 (t, r + r’)] W (t, r + r’) 0%’ = - n @f r) b 2 U’(j) 0) 
b j 

z] A(j)(t), u (t, r) = v (t, r) - w (t, r) 
.? 

c (t, r) = +- j C (t, r + r’) dr’ = 6 (t, r) 77 (t, r) + p (6 4 w (t, r) 

where u (t, r) is the mea,” “slip” velocity of phases and n (t, r), p (t, r) and E (t, r) 

are, respectively, the denumerable (numerical) and volume concentrations of particles, 
and the system porosity defined by the equality 

E (t, r) = + 
f 0 (6 r + r’) dr’, P (4 r) = $- 5du3n (t, r) = 1 --- ~(t, r) (1.4) 

b 

Vector r in (1.3) and (1.4) and similar expressions appearing below represents the 

radius vector of the center of gravity of volume b over which averaging is carried out, 

and the summation with respect to j is to be carried out over all particles in b. 
It is further assumed that averaging over volume b N tb3 is equivalent to averaging 

over a small arbitrarily selected surface a - ib2,whiCh makes it possible to determine 

all macroscopic variables in (1.3) and (1.4) not by volume integrals but by correspond- 
ing surface integrals. This assumption was used in all works dealing with similar inves- 
tigations known to the authors. 

Let us consider a volume B which satisfies the inequality b < B < A, using the 

method developed in [12], and formulate the equations for the balance of mass, momen- 
tum and moment of momentum of phases inside that volume. The related differential 
equations of conservation can be derived by standard methods from these integral rela- 
tionships [ 1, 23. We denote by S the surface bounding B and the surface of all par- 
ticles inside B by 5’s. The notation s and s,, is subsequently used with the same 

meaning in relation to the small physical volume b. The volume and surface area of 
the jth particle are denoted by b* and Sj , respectively. Surfaces S, and so obviously 

represent the sums of surfaces of all spheres contained in B and b , respectively, These 
sums comprise the parts of surfaces of all particles cut by S or s and lying inside B 
or b. We also introduce symbols so’ and 80’ to denote the surfaces of particle entirely 

contained inside S and s, and write S = SF + S, and a = af + apt where sub- 
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scripts f and p denote the parts of 6’ 
titles, respectively. 

and s which pass through the fluid and the par- 

2. Because of the incompressibility of the fluid and of the particle material it is 
possible to consider the conservation of the volume of these instead of the conservation 

of the mass of phases. The conditions of conservation of the volumes of fluid and sus- 

pension inside B are defined by 

$ 0dr + 

1 J 

8(V-Cs)ndr =0, -& dr+ ‘Cndr=O 

1 I 
(2.1) 

s so B 
where n is the vector of the external normal to the surface bounding the fluid or the 

suspension, and the surface velocity CS is nonzero only at S,. Volume B and surface 
s can be represented in the form of sums of small physical volumes and surfaces. Equa- 

tion (2.1) can, then, be integrated in two stages : first, integration over b or s and, then, 
summation of obtained results. Individual terms of sums for the integrals in (2.1) can 
be further transformed in conformity with (1.3) and (1.4). thereby expressing these in 
terms of macroscopic variables. These sums themselves can be considered to be integral 

sums and replaced by corresponding macroscopic variables. In this manner from (2.1) 

we obtain 
-&- edr+ e(vn)dr=O, S(ev+pW)ndr=O 

5 ! 
(2.2) 

lZ! S 

The condition of conservation of the disperse phase volume is obtained by subtracting 
the first of Eqs. (2.2) from the second, which yields 

$jpdr+lp(an)dr=O 
s 

(2.3) 

The first of Eqs. (2.2) and Eq. (2.3) yield the following equations of “continuity” of 
continua which simulate the fluid and the disperse phases: 

de / dt + v (FV) = 0, dp / i3t + v (pw) = 0 (2.4) 

These equations are of the same form as the equations of conservation of volume ob- 
tained in other works (see (3 - 6, lo)) 

3. The conditions of conservation of the momentum of fluid and suspension inside 
B are of the form 

ds Y& ’ BVdr + s 8V [(V - Cs) nj dr} - 
{ $ S 

s Zndr + d.$OV@dr = 0 (3.1) 
Sff-SO 

at a 1 [d&V + dl(l - 0) W] dr +l[d,OV (Vn)+d,(i--8) W (Wn)]dr- 
B S 

s Bndr + [d,B + dl (1 - Cl)] V@dr = 0 
S 5 

where CD (t, r) is the potential of external mass forces, the same as its volume mean, 

d, and 4 are the densities of the fluid and particle material, respectively, and Z (t, r) 
is the microscopic stress tensor p]. In particle interstices the Navier-Stokes equations 

and 
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2 (4 r) = - 1’ (4 r) I + 2p,,E (t, P), E = f 1 = 11bcll (3.2) 

where /~a is the viscosity of fluid, are valid, while inside particles the equation 

is valid. 
at (dW / dt) = vz - C&V@ (3.3) 

Velocities V (t, r) and W (t, r) can be presented in the form 

V (t, r) = v (t, r) + V’ (t, r), W (t, r) = w (t, r) + W’ (t, r) 

where vectors with primes denote fluctuations of velocities about their mean values . 

The moduli of these vectors are, obviously, of the same order as the modulus of slip velo- 
city u (t , r) or of the quantity ah (t, r). Because of the assumption of smallness of 
the Reynolds number calculated by any of these quantities and the particle radius, the 

squares of these vector components must be neglected, not withstanding how low or high 
are the mean phase velocities v (t, r) and w (t, r). Hence, taking into account that 

volume means of V’ (t, r) and W’ (t, r) of the kind (1.3) are zero, we obtain 

LOV (Vn) dr = 5 cv (m) dr, 
s 

i(1 -QW(Wn)dr = \pw(wn)dr 
‘s 

The integral over the surface s/ + s 0 in the first of Eqs. (3.1) is equal to the sum 
of similar integrals over surfaces S = Sf + S,, So’ and S, - So’ - S,. Conver- 
ting the last two integrals into volume integrals and using (3.3), we find that the integ- 
ral over the volume of particles cut by S is small in comparison with the integral over 
the volume of all particles contained entirely inside S and can, consequently, be neg- 
lected. Thus the integral over Sf + S, in (3.1) reduces to the sum of integrals over 

S and So’. 
Taking these relationships into account and transforming the integrals of microscopic 

quantities in (3.1) into integrals of corresponding macroscopic variables in the manner 

described in Sect. 2, from (3.1) we obtain 

da [-& \ Evdr + \ ~.v (vn) dr] - \ ondr + S (f + docyV@) dr = 0 (3.4) 
ir B S B 

L \ (d,,~\~ + d,pw) dr + \ 
c1t 

[d p (vn) + d,pw (wn)] dr - ’ andr + 
B s 

S S 

s 
(do,: + d,p) V@dr = 0 

‘I 

We have introduced here the mean stress tensor o (t, r) and the mean force f (t, r) 
of interaction between phases, both related to a unit of suspension volume 

o(t, r) = -+ 
s 

E (t, r -+ r’) dr’ 
b 

f (t, r) = - $ \ Z (t, r + r’) ndr’ = - a 7 h 2 (t, I 

SIJ’ ‘I 

Summation in (3.6) is carried out over all particles contained in 

(3.5) 

+ f’) ndr’ (3.6) 

!J ; the reason for the 
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minus sign in this formula is that vector n is by definition directed inward particles. 
From Eq. (3.4) follows the balance equation for the momentum of the disperse phase 

inside B 
d, -& ” pwdr + 1 pw (wn) dr] -t f (- f + d,@(D) dr = 0 

[ I 
(3.7) 

B S B 

The first of Eqs. (3.4) and Eq. (3.7) yield the differential equation of conservation of 
phase momenta 

d, [(a/& + VV) cv + EVVV] = Va - d,sVdj - f 

dl [(a /at + WV) pw + pwVw] = - d@V@ + f 

(3.8) 

which with the use of (2.4) we transform into 

d,,s(a Jat + vV) v = Co - d,G@ - f 

dlp(d/at+wv)w= -ddlpV@+f 

(3.9) 

Note that the macroscopic stress tensor is absent in the disperse phase. This is natural, 

since the neglect of chaotic pulsations of particles does not introduce any effects which 

could result in additional transfer of momentum by suspended particles, which could be 
superposed on the convective transfer by the mean motion of that phase. The effective 
mean stress tensor does, however, appear in the disperse phase in the presence of any 

signifi~nt Brownian motion of particles and, also, of pulsations induced by other causes. 
For instance, pulsations of particles suspended in an agitated medium lead to the appear- 
ance of stresses of the conventional Reynolds kind. Pulsations induced by fluctuations of 

the suspension porosity and those due to the nonlinear dependence of the interaction 
between phases on porosity result in the appearance of the specific tensor of “pseudo- 
turbulent” stresses, a phenomenon investigated in [9] at small Reynolds numbers. Pseudo- 
turbulent stresses are of the second order with respect to veIocity u (t, r) and can be 

neglected because of the assumption of smallness of the Reynolds number of the flow 
around individ~l particles. In the more general case the allowance for these stresses 
does not present any fundamental difficulties. 

4. Let us formulate the equations of balance for the moment of momentum of fluid 

and suspension in B 

d ,-&~&xVdr+ 1 8(r x V)((V - Cs)n)dr - (4.1) 

l3 s-b+% 

s r X (Xn)dr+d, 0r x V@dr=O 
q+so 

[d&r x V+dI(l--0)r X Wldr+ 

[d@(r x V)(Vn) -t-dl(l -6)(r x W)(\Vn)ldr - 

~~x(~*)dr+ s~d*0+d~(l-e)]rxV~dr=O 
‘s B 

Using the previous reasoning and the method described in @I, we obtain 
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$(r x V)dr =x $B(t,r,,+r’)(r, +r’) x V(t,rk +r’)dr’= &(rxv+Ko)dr 
3 Ir b(k) B 

S(‘i-e)(r X W)dr = 2 1 [‘i--8(t,rk+r’)l(rk+r’) X 
B 

Ir b(k) 

W(t,r,+r’)dr’=S‘(,(rx w+K,)dr 
B 

where rk are the radius vectors of the centers of gravity of volumes b(k) into which 

volume B is divided. Here we again use the definitions (1.3) and (1.4) and introduce 
the quantities 

0 (t, r + r’) r’ x V (t, r + r’) dr’ (4.2) 

Kl(4 4 = * [I - 0(t, r + r’)] r’ x W (t, r f r’) dr’ = 

--$$z (r(i) 1 r) x W(i)(t) + --$& 3 A(i)(t) = + a25 (t, r) 
3 7 3 

where J is the moment of inertia of a sphere of unit density and radius a about an axis 

passing through its center. In transforming the second formula in (4.2) we made use of 
the definition (1.1) and of the fact that the translation velocity of a particle contained 

in a volume of the order of b can be considered to be a random vector quantity whose 
mean properties are independent of the specific position of a particle in b. Taking into 
account that summation of vector quantities r(‘) - rk over all spheres in b(k) yields 

zero, we obtain the last expression in (4.2). 
The quantity d,K, (t, r) the inner moment of momentum of the continuum which 

simulates the fluid phase of suspension, and is introduced in accordance with the general 

method described in @I. The appearance of this moment is due to vortices of micro- 
scopic fluid motion, which vanish in the process of averaging over the volume and, con- 
sequently, do not affect the mean velocity of fluid. The inner moment of momentum 
of the continuum simulating the disperse phase is produced by the rotation of particles 

and is equal d,K, (t, r). The inner moments of momenta appearing in (4.2) relate to 
unit volumes of respective phases. The inner moments of momenta related to a unit 

volume of suspension are d,,~Ks and d,pK, Similarly to v (t, F), w (t, r) ,etc. 
these quantities define the macroscopic motion of the considered interpenetrating and 

interacting continuous media. Taking in addition into account the smallness of fluctu- 

ations of microscopic phase velocities, we can readily transform the second integrals in 
formulas (4.1) in a similar manner. 

Using (3.5) and (3.6), we further obtain 

lrx(xn)dr=F 1 (rk-l-r’)x(Xn)dr = s rxfdr+x r’x(Zn)dr’ 

% 
, 

%,k 
B 

1 
k l 

“0, k 

’ s r’ x (zn) dr’ = 2 (r(i) - rk) x 
, i 

1 Zndr + 2 S (r - r(j)) x (En) dr 

‘0, k si 
j s. 

I 

where sOk’ are the surfaces of all particles lying entirely inside volumes b(k). The first 
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term in the right-hand side of the last equation vanishes for the same reasons as the 
structurally similar term in the second of Eqs. (4.2). This is so because the mean pro- 
perties of the random force acting on a sphere are independent of the position of the 

radius vector of the sphere center,since that vector can only vary within the boundaries 
of volume of the order of b. The summation of vector quantities r(j) - rk over all 
spheres in b(k) yields, as previously, zero. 

Taking the above into consideration, from (4.1) we obtain 

do $- 
[ .s ~(rxv+K,)dr+ls(rxvCK,)(vn)dr]-~~*udr+ (4.3) 

S 

1 
’ [r x (doeA@ + f) + m] dr = 0 

B 

i 
ido8 (Y x v + Kd (vn) + 4p (r x w + K,) (svn)] dr - 

~X*ndr+~(~.E+d,p)rxV~~~=O 

We have introduced here the mean tensor of “moment” stresses x* (t, r) and the mean 

moment m (t, x), of interaction between phases, both related to a unit volume of sus- 

pension 
xi,* (t, r) = +l sin% (r?% + r,‘> xkm tt, r f r’) dr’ (4.4) 

’ &r+ m. (r, r) = - 7 j r’ - r(j)) x (I; (t, r + r’) n) dr’ (4.5) 

where Eink is the alternating antisymmetric Levi-Civita tensor, From (4.3) also fol- 

lows the condition of balance of the moment of momentum of the disperse phase 

d a 
rat 

[ s 
p@xw-i-&)dr + 

% 
P(rxw-I-%)(v+dr]-t (4.6) 

j 

[r x (d,pV@ - f) - mJ dr = 0 

The first of Eqs. (4.3) and Eq. (4.6) with allowance for (2.4) yield 

doa(Vt+vV)( rxv+Ko)=VX* -rx(d,EVd?+f)-m (4.7) 

dlp(d/dt+wV)(rxw+Kl)=-rx(d,pV@-f)+m 

Taking into account 
ax,j~ a5kj _ a 
-. - %nkrn aTj i3rj 

- .- arjF txij* - &&kr&kj) + &Lag 

where e(a) is the virtual anti~mmetric part of the mean stress tensor, and substituting 

for (4.4) the new tensor of mean moment stresses 

lcij (t, r) = Xij* (t, r) - Ei&$~~kj (t, r) r= + 1 &&krn’&j (t, r + r‘) dd (4.8) 
b 
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after subtracting the vector products of r by the equations of conservation of momen- 
tum (3.9) from the corresponding equations (4.7), we obtain 

d,:(d/&+vV)K,=V~-h-m, h=lJ~&~;r)1; (4.9) 

drp (a / dt + \vV) K, = m, Vx = 11 aX;j/drj 11 

These equations define the conservation of the moment of momentum of the considered 
continua. Besides tensor (4.8) we have in these equations the mean moment of the force 
of interaction between phases (4.5) and the additional volume moment h (t, P) pro- 
duced by the antisymmetric component of tensor (3.~5)~ as determined by (4.9) l Note 
that quantities of similar meaning were used earlier in numerous works, in [13, 141 in 
particular, on general covariant considerations. 

Note that the equation of inner moment of momentum of the continuum simulating 
the disperse phase can be derived entirely independently. Using the equation 

dlJ (A@.’ ,J dt) = M”’ (4.10) 

for defining the rotation of a single sphere, where &f(j) is the moment of forces acting 
on that sphere, and averaging over all spheres inside the small physical volume in COR- 
formity with formulas (l-3), after multiplication by the denumerable concentration of 
particles rz (t, r) ~ we obtain again the second of Eqs. (4.9) which determines the inner 

moment of momentum K, (t, r) or the mean angular velocity h. (t, r). 
We thus have a system of two scalar equations (2.4) and four independent vector equa- 

tions (3.9) and (4.9). This system is open, since the expressions for vectors of mean 
force and of the moment of the force of interaction between phases and for tensors of 

mean and moment stresses are unknown. These quantities are considered in more detail 

in Sect. 6, where it is shown that they can be expressed in terms of scalar ~nowns 

p (t, r) and p (t, f) , and of functionals of mean stresses at the surface of an indivi- 

dual sphere. Considering that such functionals are usually represented in terms of kine- 
matic characteristics of the mean (macroscopic) phase motion (see, e. g. [7] ) , we con- 

clude that this system must serve for the determinatjonofthe two unknownscalars p (t, r) 

and p (t, P) and four unknown vectors v (t, r), w (t, r), K, (t, I-) and Kt (t, r) 
(or h (t, 1’)). 

6. Let us write down separately the equations of conservation for two particular 
limit cases, viz: the motion of fluid in a stationary granular layer of specific properties, 
and the “homogeneous” model of a suspension in which mean velocities of the two pha- 
ses may be considered to be ap~oximately equal and the same as the mean velocity 

D (t, r)of the suspension. 
In the first case from the results of Sects. 2 - 4 we obtain the modified Darcy’s equa- 

tions which define the filtration of a fluid through a layer of known porosity 

v C&v) + 6, d,rP(d/al -j- vv) v = va - d,,~vQ - f 

&E (a/at-t_ vv) K,, = vj~ - In -h 
(5.1) 

The equations are of particular interest in connection with the continued discussion 

about the correct presentation of the viscous and inertial terms in equations of the theo- 
ry of filtration (see e. g. [ 151) . 

‘in the second case, assuming that v (t, r) = w (t, r) cz c (t, T) and summating pair- 
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wise the equations of conservation of mass, momentum and moment of momentum of 
phases for the determination of motion, we have the following equations: 

(a/at) d + v (de) = 0, d @‘at + cv) c = vo - d@ 

d (a/c% -cv)K=vX-h 

(SK = edoK0 f- pdlK1, d = edo + pdl) 

(5.2) 

If 0: (t, r) is expressed in terms of unknown variables, the mean pressure term P (tt r) 
appears in (5.2) (see, e. g. formulas (6.6) below), hence system (5.2) is subdefinite, since 
we have one scalar and two vector equations for the determination of two unknown sca- 
lars p (t, r) and p (t, r) and two vectors c (t, I) and K (1, r). This shows the intrinsic 

inconsistency of the single-velocity homogeneous model of suspension. 

6. According to [7] the initial step in the derivation of expressions for tensors of 
mean and moment stresses and, also, of mean forces and of moment of interphase intern 

action force in terms of specific functions (or functionals) of physical parameters defi- 
ning the fluid and the suspension particles and of unknown variables of equations of con- 

servation must be the determination of expressions for these quantities in the form of 

functionals of stresses at the surface of an individual particle of the suspension. 
Formulas (3.6) and (4.5) for the force and moment of interaction can be rewritten in 

the form 
f =n(F), m=n(M), (F) = <i Bn dr> * (6.1) 

5 

(M) = (5 (I. - r(j)) X (zn) dr> 

9 

where (F) and (M) are, respectively, the force and the moment exerted by the fluid 
on an individual particle and averaged over particles contained in the small physical 

volume with its center of gravity at some point r. Unlike in Sects. 2 - 4, we use in 
(6.1) and subsequently the vector D of the unit normal external to the particle and not 

to the surrounding fluid. 
We transform the expression for G (t, r) in (3.5) in accordance with u] and obtain 

- P6ik + PO dr’ + (6.2) 
f, rtr 

where b, is the volume of particles contained in b and Z (t, r) is as defined by (3.2). 

Using the obvious relationships 
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and taking into account (1.3) and (3.3), we reduce (6.2) to the form 

Gik = - E& + 2/k&k $ +z 5 [&mrk’nm.-/10 (c,, ink+cfj,J&)]dr’- (6. 3, 
j sj 

a1 ’ dWi 

b XU 
I bi 

7 +~)r,‘dr’ 
2 

where 

(6.4) 

is the mean strain rate tensor. 
Note that the second term of the surface integral in (6.3) vanishes owing to the imper- 

meability and incompressibility of particles. Other integrals appearing in (6.3) can be 

tranformed as follows : 

s 
’ Zimrk’nm dr’ = (rkQ) - rk) ’ 

i 
&,$L,,, dr + 

s 
&,,, (rk - r,$‘) n, dr 

sj s. 3 ” j 

rk’ dr’ = (r,(j) - rk) %+g)dr+ 

where r is th: radius vector of the center of gravity of volume b in (6.3). The first 

two terms in the right-hand sides of these equalities obviously do not affect (6. S),since 
they vanish in the summation over all spheres contained in b. In fact, owing to the in- 

dependence of the force acting on an individual particle in b and ofthe quantity dWi / 
dt + d@ / dri from coordinates within the boundaries of volume b, these sums reduce 

t0 the sum Of quantities rk (I)- rk 
1Jsing (1.1) and (4. lo), we further obtain 

’ 
\t 

.f.$ + _!$) (rk-rkW) dr= 5 Eimnds (r,-rr,(j)) (rk--rk(j)) dr= 

bi 
* 

bi 

hence the expressions for the symmetric and antisymmetric components of tensor (6.3) 
are of the form 

cS~ = - a&k + .+&k + + 21’ &, (rk - rf)) n, dr (6.5) 
j si 

j 5 
Allowing for (4.5) and multiplying the expression for a$) in (6.5) by E,~~ , we con- 
clude that the antisymmetric part of the mean stress tensor and, consequently, also the 
volume moment h (t, r) in (4.9), (5.1) and (5.2) vanish. As the result we have 
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(J= -epI+2yoe+n(Y), (Y)i, = <E I&, (rk - r-t)) II, dr 
> (6.6) 

7 
The structure of this expression is similar to that in (6.1). Similarly, the expression 

(4.8) for the tensor of mean moment stresses can be rewritten as 

b-bj 

This expression can be further transformed similarly to the transformation of the expres- 
sion for the mean stress tensor (6.2). Omitting intermediate computations, we present 

~fi~~$r,mu~>~k = < 5 einan (rm - r$ (rk - rlf”) &,n, &> - g +__l’* *) 

9 

which follows from (6.7) and has the same structure as (6.1) and (6.6). We stress that 
m (t, r) and X, (t, r) are not true tensor quantities but represent a pseudo-vector and 

a pseudo-tensor, respectively. 
The above analysis shows that the tensor of mean stress in a suspension must be sym- 

metric. Hence the a priori introduction of antisymmetric stresses in the equations 

of conservation for suspensions, as was done on phenomenological considerations, may 

not have any physical meaning. However, it follows from general physical considera- 
tions, as shown in jJ7], antisymmetric tensors appear in the definition of flow of a par- 
ticle suspension in the presence of an external field of nonzero dipole moments, which 

results in each particle being subjected to a force couple. 
Because of the evident commutative of averaging operations over spheres in a small 

physical volume and integration over the surface of an individual sphere, the expres- 

sions for quantities (F), (M), (Y) and (X) can be written in the form 

(F)= s (2l)ndr, (M)= i (r-r(j))x((I;)n)dr (6.9) 

sj “i 

(Y>i, = s’ ( 2i)int (7.k. - $)) n, dr, 

“j. 

so that the closing of the obtained system of equations of conservation reduces to the 
problem of determination of mean stresses at the surface of a single particle. This 

problem can be solved by methods described in [163. 
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